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Outline

* Motivation: What can BaF, do?

« Background: How does BaF, do it?

» Focus: Time-of-flight positron emission tomography (TOF-PET)
* Prototype development: Design considerations

» Prototype development: Components and assembly

» Next Steps: Characterizing detector performance
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Motivation

« BaF, one of the fastest known scintillators, emitting at 195 & 220 nm with sub-
nanosecond decay constant

» Fast emission only comprises ~13% of total light
— Most light is emitted at 310 nm, 600 ns decay constant

— Count rate permitting - fast component for timing, slow component for energy
resolution

— High countrate 2 pileup 1 :
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Motivation

Medical imaging
» Time-of-flight positron
emission tomography

Low energy physics
* Neutron capture cross

section measurements
Nuclear lifetime
EESIGE ERS

(TOF-PET)
Hadron therapy range
monitoring

Timing applications
* High time resolution
« High count rate

Materials science High energy physics

* Positron annihilation

« Calorimetry
spectroscopy

~
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Motivation
» Ongoing BaF, research largely focuses on material and/ or photodetector
characterization - small, single crystals

« Different applications require different detection system geometries
« Some applications require slow component rejection

Goal: Develop a pixelated BaF, test bed to characterize the
performance of various configurations for timing applications.

* Focus: TOF-PET - design inspiration
* Deployable form factor
« Variable system geometry

‘@ Los Alamos 111821 6
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BaF, scintillation mechanisms

» Slow component

- Self-trapped exciton (STE) luminescence
- Self-trapped hole: two adjacent F-ions share a
hole, effectively forming F5

- A self-trapped hole captures an electron,
forming a self-trapped exciton which

subsequently decays

* Fast component

— Core-valence (CV) luminescence

— An electron from the 5pBa?* band is excited to
the conduction band

— The hole left behind is quickly annihilated by an
electron from the 2pF- band

1% Los Alamos
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Suppression of the slow component

400'AV'I""I1"TI'
BaF, 1985 [4]
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Suppression of the slow component
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Suppression of the slow component
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Suppression of the slow component

High count rate Lower light output

Benefit Cost

Example: HEP colliders — High bunch crossing rate

and intense product showers make slow component
suppression ideal.
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An overview of TOF-PET



Conventional PET — Principles

 Antiparticle pair: electrons and positrons annihilate one another, converting the
rest mass of both particles into electromagnetic energy

Q = 1022 keV

E = 511 keV ‘K E = 511 keV

* PET leverages these kinematics to localize a positron emitter
— Near-coincident detection of back-to-back gammas defines a line of response (LOR)
— Multiple LORs indicate source position via their intersection

« Conventional PET uses TOF only for event identification

1% Los Alamos
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TOF-PET - Principles

* TOF can localize source position along each line of response
— The difference in time of arrival of annihilation quanta yields the distance from field of
view (FOV) center to the source

* |deally, enables direct source localization without image reconstruction
— Obviates the need for measurements at multiple detector angles

- Requires 1.5 mm resolution along the line of response - 10 ps FWHM coincident
time resolution (CTR)

1% Los Alamos
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TOF-PET - Principles

« TOF Improves image signal-to-noise ratio (SNR)

a c
Conventional PET - Q +—m l
2009 [7]
c
=
TOF-PET ‘a = -
— ’-

Gaussian probability kernel
FWHM determined by coincidence time resolution (CTR)
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TOF-PET — Materials

 Historically, BGO is the material of choice for conventional PET
— TOF-PET not possible

LSO is considered the best scintillator overall for PET
— 300 ps CTR for two crystals > TOF-PET feasible

Property BaF2 LSO:Ce BGO
Density p (g cm ™) 4.88 7.4 7.13
Effective atomic number, Z.¢ 53 66 75.2
Photon absorption a @511 KeV (cm ") 0.085 0.28 0.336
Radiation length X, (cm) 2 1.1 1.12
Intrinsic light yield, LYy, (ph/MeV) 1400°* " "~7000" 40 000° 10 000°
Decay time 7 (ns) 0.6-0.8"/620' 22/44° 46/365°
Photon fraction @ 0.5 MeV 0.199 0.34° 0.43¢
Emission peak(s) Amax (nm) 195'220'310" 420° 480"
Refractive index (RI) @ Apax 1.5691.55%1.50¢ 1.82° 51"
Melting point (°C) 1280° 2150° 1050°
158 60° 358

Cost ($ cm ™)
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TOF-PET — Detector structure

®

Block detector

— Tightly packed array of crystals, separated by reflective material

— Monolithic light guide

— Array of PMTs

— Interaction position reconstructed from light intensity ratios across PMT array

Los Alamos
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Scintillator
Scintillator
Scintillator
Scintillator
Scintillator

Scintillator

Light guide
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TOF-PET - Problems with BaF,

« Earliest TOF-PET systems utilized BaF,, but material property difficulties and
the advent of BGO all but halted development

« Low density, low effective Z
- Poor efficiency

* Low light output
— Poor energy resolution (photopeak identification)
— Poor position reconstruction assuming standard block detector

« UV emission
— Light collection challenges
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Prototype development



Design considerations

Goal: Develop a pixelated BaF, test bed to characterize the
performance of various configurations for timing applications.

* Focus: TOF-PET - design inspiration
* Deployable form factor
« Variable system geometry

» Low density, low effective Z

: * High time resolution
— Larger pixels

— Total internal reflection

* Low light output - Low transit time spread photodetector
— Read out each pixel individually

o * Modular
* UV emission - Easily configurable experimental
— Total internal reflection geometries

- UV sensitive photodetector

1% Los Alamos
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Photonis Planacon

* 59 mm x 59 mm x 21 mm
» Sapphire window - Good UV transmission

« MCP gain stage
— 35 ps transit time spread

« 8x8 grid of anodes
— 5.9 mm square anodes, 6.5 mm pitch

« Two Samtec QRMS8 connectors for signal
transmission

» Potted HV divider (SHV to multi-pin LEMO)

AAAAAAAAAAAAAAAAAA
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BaF, array — Pure BaF, pixels, 4.6 mm x 4.6 mm x 30 mm
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Align pixels over anodes | S T
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Slow component suppression

» Slow component suppression does not
necessarily improve TOF-PET performance

 Instead, facilitates system characterization for
high count rate applications

— Slow component suppression via heating isn’t
practical for instrumentation

— Doping can also degrade fast component intensity
— Optical filtering is relatively easy to implement

* Interference filters can be manufactured to
match pixel size, preserving optical
segmentation

« Complication: filter transmission is angle-of-
incidence (AOI) dependent

1% Los Alamos
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Filter optimization

« Choice of long wavelength cutoff must account for AOI distribution of collected light

« Simplified 2D light transport, AOl-dependent filter transmission, and QE calculations
employed to optimize long wavelength cutoff for fast photoelectron production

Mg . ?
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$ sE @ 3 ;ggeg § f
g ¥F eg S o5
g 305_ i;'" 45 deg E -
= E b4 4 . . 2 C
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20 v transmission with 151
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Wavelength (nm)
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Filter optimization

_ 227 nm filter

Transmission [%)]

* Increasing the filter cutoff from 227 nm
to 242 nm preserves more off-angle
fast light, at the cost of slightly more
slow component transmission

242 nm filter

» Slow component suppression via 5

doping would allow for an even higher T T N
cutoff

Wavelength [nm]

Long wavelength Number of fast
photoelectrons (pe) | LF25tPel/ [Total pe]

227nm 1.74 / MeVee 0.999

242nm 8.17 / MeVee 0.985

1% Los Alamos 2020 [9]
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DAQ Electronics

®

Timing: CAEN VX1290N-2eSST TDC
— 16 channels
— 25 ps resolution
— Timing signal can be picked off from the HV divider
= Modify HV divider provided by Photonis (if possible)
= Design custom HV divider
— A 10 ps resolution model coming soon...

Spectroscopy: CAEN VX2740 digitizer
— 64 channels

- 125 MS/s - 8 ns samples

- 2 V full scale range, 16-bit

— Spectroscopy helps with event identification in
TOF-PET

N
2 e e e s
AANENNNNNNNENENENENNENE NN NN NN NN NN NN NN NN

Los Alamos
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Detector assembly
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BaF, array construction

» ~60 plate stack forms pixel frame
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BaF, array construction

 Air gap around each pixel enables total internal reflection
— The top of each pixel shows the color of the surface the array sits on

1% Los Alamos
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Detector assembly

Stack up (single pixel)

Planacon

Filter = |
Diaphragm ., s m—
blocking unfiltered I
light [ [
] ]

Crystal —— .
. .

] ]

. .

. .

 Filtered BaF, array sits at
the end of an aluminum
housing

~
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Detector assembly

» Planacon is air-coupled to
the array

‘@ Los Alamos 111821 32
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BaF, array construction

» Four corner screws for mounting

* 4 detectors assembled!

1% Los Alamos
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Next steps
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Simulations

» Toy Monte Carlo models are useful for system performance estimation and
building intuition, but they are not sufficient

« GEANT4: G4Scintillation and G4OpticalPhoton
— One simulation spanning from radiation incident on a BaF, crystal to digitized waveforms

« Validation via comparison to experimental data enables design optimization in
simulation space
— Optimization parameters
= Crystal dimensions
= Crystal emission spectrum (i.e., doping)
» Filter wavelength cutoff
= Optical coupling

1% Los Alamos
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Data acquisition software

« VX2740 digitizers represent a significant departure from previous CAEN
product design

- Hardware: direct communication via USB/ ethernet rather than VME backplane
- Software: string-based register interface rather than hexadecimal

« This is an opportunity to build new DAQ control software from scratch, rather
than making discontinuous modifications to existing code
— Must incorporate CAEN TDC, which isn’t supported by the current software

« Set up time signal pickoff from HV divider
— Requires either existing circuit modification or custom circuit design

1% Los Alamos
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Experiments

 Filter characterization
— 1" x 17 cylindrical pure BaF, crystal

— Simultaneous collection of filtered and unfiltered
light leads to filtered photopeak identification

— Feasibility study for filtered spectroscopy

L E3 | R

t
Filter

‘@ Los Alamos 1118/21 37
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Experiments

« PET-like system performance

— Mounting hardware to secure
detectors to ring stands

- 4 detectors have been constructed
— 22Nga source localization

22Na source

\/

Detectors

Ring stands

AAAAAAAAAAAAAAAAAA

Clamp

Mounting plate

Detector Top view
Ring stand
Detector
Front view

Mounting plate

Ring stand
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Final thoughts
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Questions?
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Toy Monte Carlo models
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Light transport

* N events with E energy deposited

9

For each event
— Position sampled uniformly throughout crystal
— Number of photons sampled from Poisson distribution with mean E*TLY

— For each photon

Emission component sampled according to FLY/TLY

Emission time sampled from exponential distribution

Wavelength sampled from digitized spectrum

Direction sampled isotropically

- Photons moving the wrong way are thrown out

Time to hit crystal face in each direction computed from position and direction

Indices of refraction and critical angles computed from wavelength

Los Alamos
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Light transport

« Based on times and TIR criteria, the following are calculated
— Collected (bool)
- TIR at collection face (bool)
— AOI on collection face
- Refracted AOI after escaping through collection face
— Transit time in crystal
— Collection time (emission time + transit time)
— Number of reflections

1% Los Alamos
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Filter transmission

* For each photon
— Uncollected photons are thrown out

- Effective photon wavelength calculated from wavelength and RCAOI, according to
transmission AOI dependence

- Photons with effective wavelength outside of digitized transmission range are thrown
out

- Transmitted (bool) sampled according to probability at effective wavelength

1% Los Alamos
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Quantum efficiency

* Runs off of either light transport or filter transmission output

* For each photon
— Uncollected/ untransmitted photons are thrown out
- Photons with wavelength outside of digitized QE range are thrown out
— Converted (bool) sampled according to probability at wavelength

1% Los Alamos
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Corner radius

 Filleted corners maintain an airgap around each pixel

r
r=xV2 =>x=—
2
a V2
+ +—

a+x=r=a+—=r

V2

-2

—a=r(1—-—

x V2

« Aslightly more complicated equation
accounts for machining tolerance

* Air gap: 0.05mm

« Corner radius: 0.11mm

* Pixel size: 4.6mm

* Hole width: 4.7mm

1% Los Alamos
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BaF, array structural components — pixel plates

8 7 6 5 4 3 2 1

Stack up to form a 3D pixel
frame
Rounded corners on pixel
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around each pixel sab E
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. . Al
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BaF, array structural components - filter plates

8 7 6 5 4 3 2 1

« Align filters under pixels
» Laser-cut black acetal

- Nonconductive material s 7
avoids potential interference
with electron optics i
c
DETAIL M [;!—)
SCALE10:1
]
"""" " 1A JORDAN ﬁ;mmxxxxxxxxxxcx
[T 8x8 grid of square holes; typical dimensions. - ] X ] C E NTER | N G
N 8-FOIL TIGHT
" aackomen o EFC8-1x1T A3
8 7 3 5 4 - ) .

~
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BaF, array structural components — spacer plates

8 7 [ 5 4 3 2 1

‘
« Diaphragm blocking E
unfiltered light to account
for pixel-filter size SRR ol
. O
mismatch A 0l e
« Laser-cut black acetal 2000)|
- Nonconductive material .
avoids potential interference _ ‘
with electron optics ‘
LM, [% M Side
B
T T AL JORDAN @smamXXXXXXXXXXDX
[T 88 grid of square holes: typical dimensions. ' ]X] SPAC|NG
. 8-FOIL TIGHT
™ plack DERN o EFS8-1x1T A3
8 7 6 5 4 - ) .

~
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Detector housing — cap

Contains the pixel-filter-
Planacon stack-up

Wall thickness set such
that two adjacent detectors
will have 3 columns of
“‘dead pixels” between
them

Aluminum

- Low Z material for minimal
gamma attenuation

~
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DIMENSIONS ARE BASIC

[T Tapped holes for #4-40 socket head cap screws.
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Detector housing — back plate
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Principles of radiation detection
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What is a radiation detector?

« A transducer that converts radiation
into electric current

— The output current encodes information
about radiation interactions within the
detector

« An analogy: cryptography
— Goal: to translate information’s syntax
while preserving its substance
— Physics handles the encryption

- We are responsible for decryption, so
we must understand the physics

By Hubert Berberich (HubiB) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=25964875
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Two stages of general detector response

1. Excitation: a free, energetic charged particle interacts Coulombically with the
electrons in the detector active volume
— Direct, e.g., a decay alpha in a gas detector
— Indirect, e.g., a photoelectron in a semiconductor detector

2. Collection: the intervening process(es) between excitation and the final output
current
— Intrinsic, e.g., scintillation
— Extrinsic, e.g., pulse shaping

+«—— Excitation — <+—— Collection —

—) Exirinsic 2

<— Incident radiation| «— Active volume —— | Electronics —

l
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Two stages of general detector response — timing

» Extrinsic collection processes can be optimized for timing
— Ex: high time resolution photodetectors in a scintillation detector

« Excitation time and intrinsic collection time are determined by detector material
properties

- Ex: stopping power, electron/ hole mobilities (semiconductors), fluorescence decay
time (scintillators)

— Define the fundamental limits of detector performance

« New material properties > new detectors
<+<— Excitation — <+<—— Collection —
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Two stages of general detector response — timing

» Extrinsic collection processes can be optimized for timing
— Ex: high time resolution photodetectors in a scintillation detector

« Excitation time and intrinsic collection time are determined by detector material
properties

— EXx: stopping
time (scintill
— Define the fi

The discovery of the BaF, fast scintillation component
prompted a wave of BaF, R&D

« New material properties > new detectors

®
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BaF, Timeline
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A brief history of BaF, R&D

100
1956 [11] :
£ 80 —
- BaF;, was originally investigated for §
. . 0 —
vacuum ultraviolet optical elements  §
— Non-hygroscopic > Zaot—
— Very slightly water soluble i N
. |
1200 1400 1600 1800 2000

(b)

WAVELENGTH (ANGSTROMS)
Cs'37 662 kev Gamma Spectrum

BaF,

« 1971: Farukhi et al. observe scintillation under
ionizing irradiation
— Emission peaked at 325 nm
<= .
— 630 ns decay time constant

1971 [12] — Scintillation mechanism not well understood,

J Shonsel No. o2 attributed to modification of hole centers
1% Los Alamos
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A brief history of BaF, R&D

« 1971-1982: very little progress, still mostly focused on UV transmission

« 1982: Ershov et al. and Laval et al. independently observe the fast scintillation
component

— Laval et al. propose TOF-PET as a potential application

BaF, ‘! 10 T T T s s T T T d Y 1
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A brief history of BaF, R&D

« 1971-1982: very little progress, still mostly focused on UV transmission
1982: Ershov et al. and Laval et al. independently observe the fast scintillation

component
- Laval et al r\rnnncn TNFEF_DPDEFET ac a nntantial annliratinn
1982 onwards:
/\\  Scintillation mechanism characterization 1
10'F . :
______ -~ ¢ Slow component suppression pisommonesy |
: 550 ps ... o c i
£ * Application-specific development
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BaF, in the 21st century

Medical imaging
High energy physics
Low energy physics
Photodetectors Materials science
« Solar-blind PMTs
« VUV SiPMs

Doping
« La,Y, Lu, Sc
« Tm, Ce, Nd

Other applications
Oil well logging
Scintillation Thermal neutron detection
characterization Double beta decay detection
» Discovery of “very fast” Dark matter detection
emission below 240 nm
with 100 ps decay time

BaF,-based materials
* Nanoparticles
 Ceramics
 Composites
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